Probabilistic Reasoning in Bayesian Networks: A Relational Database Approach

نویسندگان

  • S. K. Michael Wong
  • Dan Wu
  • Cory J. Butz
چکیده

Probabilistic reasoning in Bayesian networks is normally conducted on a junction tree by repeatedly applying the local propagation whenever new evidence is observed. In this paper, we suggest to treat probabilistic reasoning as database queries. We adapt a method for answering queries in database theory to the setting of probabilistic reasoning in Bayesian networks. We show an effective method for probabilistic reasoning without repeated application of local propagation whenever evidence is observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Relational Model Benchmark Generation

The validation of any database mining methodology goes through an evaluation process where benchmarks availability is essential. In this paper, we aim to randomly generate relational database benchmarks that allow to check probabilistic dependencies among the attributes. We are particularly interested in Probabilistic Relational Models (PRMs), which extend Bayesian Networks (BNs) to a relationa...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

On the implication problem for probabilistic conditional independency

The implication problem is to test whether a given set of independencies logically implies another independency. This problem is crucial in the design of a probabilistic reasoning system. We advocate that Bayesian networks are a generalization of standard relational databases. On the contrary, it has been suggested that Bayesian networks are different from the relational databases because the i...

متن کامل

Probabilistic Backward and Forward Reasoning in Stochastic Relational Worlds

Inference in graphical models has emerged as a promising technique for planning. A recent approach to decision-theoretic planning in relational domains uses forward inference in dynamic Bayesian networks compiled from learned probabilistic relational rules. Inspired by work in non-relational domains with small state spaces, we derive a backpropagation method for such nets in relational domains ...

متن کامل

On the Coherence of Probabilistic Relational Formalisms

There are several formalisms that enhance Bayesian networks by including relations amongst individuals as modeling primitives. For instance, Probabilistic Relational Models (PRMs) use diagrams and relational databases to represent repetitive Bayesian networks, while Relational Bayesian Networks (RBNs) employ first-order probability formulas with the same purpose. We examine the coherence checki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003